

SILICON CRAFT TECHNOLOGY PLC

Leading RFID ICs & NFC Solutions with Customized ASIC Design Expert

SHAPE THE WORLD OF SECURED AND CONNECTED DEVICES WITH

NNOVATION & NTELLIGENCE

Silicon Craft, Thailand's first and only privately held semiconductor design company, is renowned for its expertise in designing and delivering linear and mixed-signal integrated circuits.

With extensive experience and partnerships with top-tier foundries and semiconductor manufacturers, we are a prominent global provider of RFID chips.

Established in 2002, we offer innovative, custom, and standard-designed microchips for RFID applications, delivering products with high value-added features and superior overall system performance.

Leading company in NFC anti-counterfeiting application

Forefront in NFC-sensor interfaces for smart healthcare and environmental chemical sensing

Expert in low-power, mixed-signal ASICs design

Proven expertise in cryptographic RF communication technology

PRODUCTS & SERVICES

RFID/NFC Integrated Circuit for:

Advanced NFC

Industrial IoT

Immobilizer

Animal ID

Custom Design to Target a Wide Range of Applications and Use Cases

Anti-Counterfeiting & Brand Protection

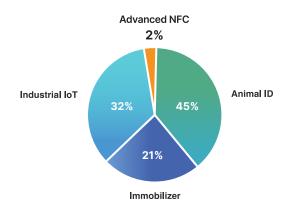
iting Smart Home tion & Building

Medical Devices & Healthcares

Toy & Game

Automotive

Livestock


Market Coverage

Our target strategic growth countries:

EU, USA, Japan, Korea, Australia, China, India

Revenue Contribution

RFID PRODUCT LINE

Advanced NFC

Industrial IoT

Immobilizer

Animal ID

LF FDX-B Transponder IC

with tunable capacitor

Superior read range performance

Support mainstream FDX command

LF FDX-A/FDX-B Transponder IC

Outstanding read range performance

SIC7150

NFC Tag IC for Connectivity with UART Interface

SIC4310/SIC4311

 NFC tag IC with dynamic NDEF for web-based authentication

• NFC Tag IC for Authentication with On-Chip Encryption Engine

SIC43NT/SIC43S1

 NFC tag IC with dynamic NDEF for web-based authentication

NFC Tag IC for Sensor Interface with On-Chip Sensor Biasing and 12-bit ADC

SIC4340/SIC4341/SIC4343

Single chip with NFC to sensor connection which can be used in battery-less application

• ISO14443A HF Reader IC

Support transmitter supply up to 7V

Multi-Protocol HF Reader IC

- Support ISO 14443 A/B and ISO 5693
- Support transmitter supply up to 7V

Multi-Protocol HF Reader IC with JIS-X-6319-4

- Additional support JIS-X-6319-4
- Support transmitter supply up to 7V

Multi-Protocol HF Reader IC with Low Power Card Detection Mode

- Support ISO 14443 A/B and ISO 15693
- Consumes only 4.7 µA in card detection mode S-Family Immobilizer Transponder

Multipage HDX Transponder for Industrial Application

SIC73F1

 LF HDX transponder with EEPROM 1,360 bits in 17 pages read/write memory

• LF HDX Transponder for Industrial Application

 LF HDX transponder with 80-bit programmable code

• LF Automotive Transponder

SIC61 Family

Automotive transponder with form, function, and performance compatible with the majority of motor vehicles sold worldwide

• N-Family Immobilizer Transponder

SIC6146/SIC6146B/SIC6146E/ SIC6147/SIC6149/SIC614A

- 48-bits, 96-bits, and 128-bits encryption with HT algorithm
- LF FDX technology

• T-Family Immobilizer Transponder SIC614C/SIC614D/SIC614E/SIC618A

- 40-bits, 80-bits, and 128-bits encryption with D algorithm
- LF HDX technology

SIC6148/SIC6188/SIC61T5

- 96-bits and 128-bits encryption with M algorithm
- LF HDX technology

• A-Family Immobilizer Transponder

128-bits encryption with T algorithm

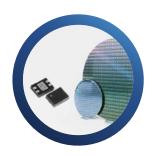
LF HDX technology

Best-in-class reading performance HDX tag IC in the market with tunable capacitor

LF HDX R/O Transponder IC

• ISO/IEC 15693 Tag IC for Industrial Application

 Industrial tag IC compatible with NFC type 5, featuring a reprogrammable digital signature



SIC43NT SIC43S1

NFC FORUM TYPE 2 TAG ICS FOR ITEM-LEVEL AUTHENTICATION

SIC43NT and SIC43S1 are passive NFC Forum Type 2 tag ICs, fully compliant with ISO14443A standard. The user memory of both chips supports NDEF updating with a unique value for each tap, enabling app-less NFC authentication.

For enhanced security, the SIC43S1 contains an AES-128 encryption engine designed for use with mutual authentication and encrypted communication schemes.

HIGHLIGHT FEATURES

- NFC Forum Type 2 Tag
- Dynamic NDEF Message Containing UID and a Secured Authentication Code (SAC) or Rolling Code for Authentication
- ISO14443A, 106kbps
- 50pF Input Capacitance
- Secured Tamper Detection and Verification via SAC or Rolling Code
- Pin Configuration for RF Field Detection or Tamper Detection (SIC43NT)
- Operating Temperature: -40°C to 85°C

- Item-Level NFC Label or Sticker with Authentication Function
- Smart Packaging
- Vouchers and Coupons
- Access Control Card with Authentication Function

NFC TAG ICs FOR ITEM-LEVEL AUTHENTICATION

■ SIC43NT

NFC Forum T2T with Secured Rolling-Code

■ SIC43S1

NFC Forum T2T with AES-128 Encryption

SPECIFICATION

SIC43NT

SIC43S1

Standard	NFC Typ	pe 2 Tag	
Memory			
User Memory Size [bytes]	816	144	
Retention	10 y	ears	
Write Cycle [times]	100k	100k	
Memory Protection	32-bit Password Protection	AES-128 Mutual Authenticat	
Dynamic NDEF			
UID	14 byte	s (ASCII)	
Tamper Status	2 bytes (ASCII)	-	
Timestamp	8 bytes	(ASCII)	
RLC/SAC	8 bytes (ASCII)	32 bytes (ASCII)	
Security			
Mutual Authentication	No	Yes, AES-128	
Encrypted Communication	No	Yes, AES-128	
I/O Function			
RF Detection	Yes	No	
Tampering Detection	Yes	No	
Others			
On-Chip Capacitor	50	pF	
Packages	Sawn Wafer with Bump, DFN	Sawn Wafer with Bump	

DEVELOPMENT KITS SUPPORT MATERIALS

- Demo Android APP and Source Code
- Reference PCB Design and Schematic Diagram
- Reference Antenna and Antenna Design Tool

NFC TYPE 2 TAG ICS WITH UART INTERFACE AND ENERGY HARVESTING FUNCTION

SIC4310 SIC4311

SIC4310 and SIC4311 are NFC type 2 tag ICs with UART interface that bridge data transfer between NFC devices and UART-connected devices such as MCUs.

In addition, SIC4310 and SIC4311 can harvest energy for peripheral circuit up to 10mA from desktop RFID readers or up to 7mA from typical NFC phones. This energy harvesting capability enables 'batteryless' applications that instantly operate when an NFC device is tapped, even without a battery inside.

HIGHLIGHT FEATURES

- NFC Forum Type 2 Tag With Additional Commands
- Direct Data Transfer Between NFC and UART, or Vice Versa
- Utilizes NFC Energy Harvesting for Self-Operation or External Power Sourcing
- 3.3V On-Chip Regulator for Energy-Harvesting Output
- NFC Energy Harvesting: Up to 10mA Capability to Power External Circuits (Depending on the NFC Device's Output Power)
- 196 Bytes of User Memory

- Shared facility (e.g. washing machine, coffee maker, or printer) personalization and controlling via NFC
- NFC energy harvesting module
- Zero-energy emergency data transfer channel for electricity, water or gas metering
- NFC bridge for medical devices
- Interactive packaging

CONNECTIVITY AND ENERGY-HARVESTING NFC TAG IC

SIC4310

NFC Forum T2T with UART Interface and 8 GPIOs

SIC4311

NFC Forum T2T with UART Interface, 7 GPIOs, and VBAT3V3 Pin

SPECIFICATION	SIC4310	SIC4311
Communication		
Standard	ISO14443A, NFC T2T	ISO14443A, NFC T2T
Data Rate [kbps]	106	106
Interface	UART	UART
Buffer Size [byte]	64	64
Memory		
Memory Size [byte]	196	196
Data Retention [year]	10	10
Write Cycle [times]	100,000	100,000
Operating Condition		
Operating Temperature	-40 to 85°C	-40 to 85°C
Maximum Standby Current	80μA (use XVDD pin)	0.1μA (use VBAT3V3 pin)
External Input Supply Voltage	2.7V to 3.6V (use XVDD pin)	3.0V to 10.0V (use VBAT3V3 pin)
Maximum Harvesting Current		
Harvest from Mobile Phone	7.82mA @3V	7.82mA @3V
Harvest from Desktop Reader	10.2 mA @2.87V	10.2 mA @2.87V
Pinouts and Peripherals		
GPIO pins	8	7
On-chip Capacitor [pF]	30.3	30.3
Packages	QFN3×3 -16 pins	QFN3×3 -16 pins

DEVELOPMENT KITI

SIC4310-HV Development Kit: P10CK081PB0S110D0CBA

SIC4310-FU Development Kit: P10CSECR000SN10D1CB

DEVELOPMENT KIT SUPPORT MATERIAL

- Firmware Source Code (SIC4310-FU)
- Demo Android/iOS App and Source Code
- Reference PCB Design and Schematic Diagram
- Reference Antenna and Antenna Design Tool

SENSOR INTERFACE PRODUCTS

SIC4340 SIC4341 SIC824B **SIC4343**

PRINCIPLE

Chip bias current and measure voltage in response to changes in resistance or capacitance across sensor

APPLICATION Resistance, Capacitance, Temperature, Water TDS, etc.

Chip bias voltage to WE-RE and measure current across electrochemical sensor

Heavy Metal, Glucose, Ketone, Uric acid, Cortisol, Hepatitis B Virus, Chemical Substances, Biomarkers, etc.

Chip bias voltage and measure voltage in response to changes in resistance across sensor (open circuit potential)

pH, Force, Strain, Ion Elements such as Na+, K+,Ca2+,Mg2+, Biomarkers, etc.

■ SIC4340

NFC type 2 tag IC with built-in current source and ADC for galvanostat measurement.

	IONS

Communication Interface

Product Form Factor

Biasing Current Range

Bias Wave Form

Voltage Measurement Range

Measurement Accuracy

Voltage Limiter

Multiplexing

Application Example

SIC4340

NFC Type 2 Tag

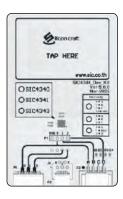
QFN, Sawn Wafer with Bump

1 - 63 μA with 1 μA / Step $8 - 504 \mu A$ with $8 \mu A$ / Step

• DC

Square Wave with Selectable Frequency 300 Hz - 50 kHz

0.2 to 1.2 V


± 1.2 mV

1.28 V

3 Channels

Resistive Sensor Capacitive Sensor Temperature Sensor Water TDS (Total Dissolved Solid)

DEVELOPMENT KIT

SIC824B

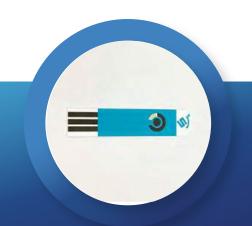
SIC4341 SIC4343

SUPPORT MATERIAL

- Demo iOS/android application
- Reference PCB design and schematic diagram
- Reference antenna and antenna design tool

■ SIC4341

NFC Type 2 tag IC with built-in ADC and potentiostat sensor interface for electrochemical measurement


I SIC824B

Potentiostat sensor module with bluetooth® 5.2 for electrochemical measurement

SPECIFICATIONS	SIC4341 Potentiostat Sensor Interface	SIC824B Potentiostat Sensor Module
Communication Interface	NFC Type 2 Tag	Bluetooth® 5.2
Product Form Factor	QFN, Sawn Wafer with Bump	PCB
Bias Voltage Range	-0.8 to +0.8 V	- 1.6V to 1.6V (1.6V Dynamic Range)
Bias Voltage Resolution	5 mV/Step	5 mV/Step
Current Measurement Range	Selectable ± 2.5 µA ± 20 µA	Hardware fix Customizable Maximum ± 500 µA
Pin Configuration	Configurable WE, RE, CE	Fixed Position
Measurement Accuracy	± 5 nA for ± 2.5 μA Range ± 20 nA for ± 20 μA Range	± 0.1% of Current Range
Compatible Analysis Technique	Amperometry Voltammetry	Amperometry Voltammetry Open Circuit Potential (OCP)
Application Example	Chemical Sensor Biochemical Sensor	Chemical Sensor Biochemical Sensor Potentiometric Sensor

Screen-Printed Electrode (SPE) on PET Substrate 3 Electrodes Including;

- Working Electrode: Graphene (Size: Diameter 3 mm)
- Counter Electrode: Graphene
- Reference Electrode: Ag/AgCl

I SIC4343

NFC type 2 tag IC with built-in DACs and ADC for voltage measurement which can be configured to single-ended or differential-ended mode.

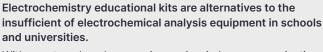
Single Ended Voltage Sensor Interface Chip

Differential Ended Voltage Sensor Interface Chip

Communication Interface	NFC Ty	pe 2 Tag				
Product Form Factor	QFN, Sawn w	QFN, Sawn wafer with bump				
DAC Resolution	8-	-bit				
Bias Voltage	0.2 tc	1.2 V				
Measurement Method	Measure voltage with respect to GND	Measure voltage between 2 pins				
Voltage Measurement Range						
Input Buffer in Enable	0.2 to 1.2 V	-1 to +1 V				
Input Buffer in Disable	0 to 1.2 V	-1.2 to +1.2 V				
Measurement Accuracy	± 1.	2 mV				
Sampling Rate	10	sps				
Application Example	Chemic	al Sensor al Sensor cal Sensor				

REFERENCE CASES

Year	Application	Author	Affiliation	Journal	Reference
2023	Hydroquinone	Charles S. Henry	Colorado State University, US	Electroanalysis	Electroanalysis.2023;35:e202200552
2023	Cortisol	Fabiana Arduini	University of Rome Tor Vergata, Italy	Sensors and Actuators B: Chemical	Sensors & Actuators: B. Chemical 379 (2023) 133258
2023	Breast cancer sensor	Warakorn Limbut	Prince Songkla University, Thailand	Microchimica Acta	Microchimica Acta (2023) 190:232
2022	Formaldehyde sensor	Warakorn Limbut	Prince Songkla University, Thailand	Talanta	Talanta 254 (2023) 124169
2022	Multi-detection, COVID & antibiotic drug	Can Dincer	University of Freiburg, Germany	Materialstoday	Materials Today (2022) 61:129-138
2022	Leptospirosis	Sudkate Chaiyo	Chulalongkorn University, Thailand	Analytical Chemistry	Anal.Chem.(2022) 94: 14583-14592
2022	Heavy metals (As(III), Cr(VI), Hg(II), Pb (II), Cd (II))	Orawon Chailapakul	Chulalongkorn University, Thailand	Microchimica Acta	Microchimica Acta (2022) 189: 191
2022	Pesticides	Chanchana Thanachayanont	National Metal & Materials Technology Center (MTEC), Thailand	IEEE	19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (2022)
2021	Hepatitis-B	Orawon Chailapakul	Chulalongkorn University, Thailand	Sensors and Actuators B: Chemical	Sensors & Actuators: B. Chemical 326 (2021) 128825
2021	NFC-based sensing technologies article	Firat Güder	Imperial College London, UK	Nature Reviews Materials	Nature Reviews Materials volume 6, pages (2021) 286–288



ENHANCING LEARNING HANDS-ON EXPERIENCE

ELECTROCHEMISTRY EDUCATIONAL KITS

ELECTROCHEMISTRY EDUCATIONAL KITS

THE KITS CONSIST OF

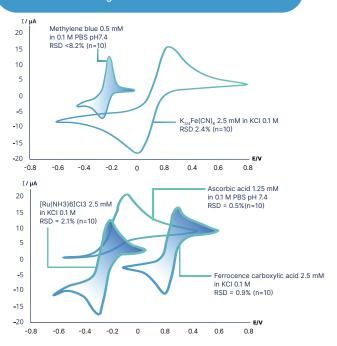
With over two decades experiences in wireless communication, we successfully developed NFC with sensor interface chip enabling low-cost and portable electrochemical analysis device for individual learning experience anytime anywhere.

WIRELESS POTENTIOSTAT & GALVANOSTAT KIT

NFC, Bluetooth

MOBILE APPLICATION Android/ iOS

SICR24R



SCREEN PRINTED ELECTRODES (SPEs) Carbon-Gr

ADVANTAGES

- Increase accessibility to electrochemistry lab: A budget-friendly portable galvanostat and potentiostat kit provides a hands-on learning experience for all students.
- Gain more understanding in input-output signal in electrochemical analysis: Students can easily understand the input and output signal of their measurement configuration through real-time graph.
- Capability to achieve higher technology readiness level: Students can easily understand the input and output signal of their measurement configuration through real-time graph.
- Improved teaching efficiency: Engage and motivate students by utilizing easy-to-use innovative galvanostat and potentiostat kit.
- Multidiscipline skills: Students can practice both analytical chemistry and NFC wireless technology using their own smartphones.

Cyclic Voltammograms of Various Electrochemical Substances using Silicon Craft's SPEs

SENSOR PRODUCT SUMMARY

	SIC4340	SIC4341	SIC824B	SIC4343 Single-Ended Mode	SIC4343 Differential Mode	
RFID Features						
Working Principle	Chip excites sensor with current, then measures the changes in sensor through voltage	Chip excites sensor with potential and induce electrochemical reaction to occur, then measures the changes in sensor through current	Chip excites sensor with potential and induce electrochemical reaction to occur, then measures the changes in sensor through current	Chip measures voltage with respect to GND	Chip measures voltage between 2 pins	
Communication Interface	NFC Type 2 Tag ISO14443A	NFC Type 2 Tag ISO14443A	Bluetooth® 5.2 BLE	NFC Type 2 Tag ISO14443A	NFC Type 2 Tag ISO14443A	
Power Management		RF gulator 1.9 V	Lithium rechargable battery 3.7 V 320 mAh	R On-chip reg		
Number of Channels	3 I/O 3 channels - configurable	3 I/O Configurable WE, RE, CE	3 I/O Fixed position WE, RE, CE	3 I/O 2 channels - configurable Voltage source = 2 pins ADC input = 1 pin	3 I/O 1 channel - configurable Voltage source = 1 pin ADC differential input = 2 pins	
Voltage Source						
Bias Wave Form	-			oc		
Bias Voltage Range		V(WE-RE) -0.8 V to +0.8 V	V(WE-RE) -1.6 V to 0 V -0.8 V to +0.8 V 0 V to +1.6 V	0.2 V to	1.2 V	
Bias Voltage Resolution	-		5 n	nV		
Bias Voltage Accuracy	-		± 2 r	nV		
Current Source						
Bias Wave Form	1) DC 2) Square wave at selectable frequency 300Hz – 50kHz					
Bias Current Range/ Resolution	Range 0: 1 - 63 μA Range 1: 8 - 504 μA	-				
Bias Current Resolution	Range 0: 1 μA /Step Range 1: 8 μA /Step	-				
Bias Current Accuracy	Range 0: ± 0.5 μA /Step Range 1: ± 4 μA /Step		-			
Analog Input						
Input Impedance	Input buffer is enabled: > 10 M Ω Input buffer is disabled: 18 - 42 k Ω		-	Input buffer is enabled: > 10 MΩ Input buffer is disabled: 18 - 42 kΩ	Input buffer is enabled: > 10 MΩ Input buffer is disabled: 18 - 42 kΩ	
Measured Current Range		Selectable ± 2.5 uA ± 20 uA	Maximum ± 500 uA Fixed by hardware Customizable			
Measured Voltage Range	Input buffer is enabled: 0.2 V to +1.2 V Input buffer is disabled: 0 V to +1.2 V			Input buffer is enabled: 0.2 V to 1.2 V Input buffer is disabled: 0 V to 1.2 V		
Measured Accuracy	± 2.5 mV	± 5 nA for ± 2.5 uA ± 20 nA for ± 20 uA	0.1% of current range	± 2.5		
Data Conversion Rate	10	sps	50 sps	10 s	sps	
Memory						
User Memory	144	bytes	376 kbytes	144 b	ytes	
Erase/Write Cycles	100	,000	10,000	10,000 100,000		
Data Retention	10 years	s at 70°C	15 years at 85°C	10 years at 70°C		
Compatible Analysis Techn	niques					
	Electrical condutivity (EC)	Amperometry Voltammetry	Amperometry Voltammetry Open circuit potential (OCP)	Open circuit potential (OCP)		
Form Factor						
Leadless	QFN10	6L 3×3		QFN16	L 3×3	
РСВ	Dev kit 85.6 i	mm x 54.1 mm	with housing 90 mm x 40 mm	Dev kit 85.6 mm x 54.1 mm		

WITH ANTI-COLLISION AND REPROGRAMMABLE DIGITAL SIGNATURE

SIC56NL is a vicinity tag IC compatible with ISO/IEC 15693 and NFC forum type 5 tag, with reprogrammable digital signature.

This chip brings an easy-to-discover NFC experience for consumers, and supports multiple tags reading based on anti-collision standard from ISO/IEC 15693 and includes Electronic Article Surveillance (EAS) feature to deter shoplifting.

SIC56NL supports de facto standard for the read signature command, with 32-byte digital signature allowing item-level verification for consumer without internet access.

HIGHLIGHT FEATURES

- NFC forum type 5 tag compatible
- RF interface based on ISO/IEC 15693
- 320 bytes of user memory with 50 years data retention
- Multiple tag reading with fast inventory read
- On-chip capacitance 23.5 pF
- Electronic article surveillance (EAS)
- Reprogrammable 32-byte digital signature

- Asset and document tracking
- Library management
- Laundry tag
- Pharmaceutical supply chain management
- Toys
- Smart packaging
- Product authentication

NFC FORUM TYPE 5 TAG IC FOR ASSET TRACKING

SPECIFICATION	SIC56NL
Standard	NFC Type 5 Tag ISO/IEC 15693 with AFI and DSFID Support ISO/IEC 18000-3 Mode 1
Memory	
User Memory Size [bytes]	320
Data Retention [years]	50
Write Cycle [times]	100,000
Access Protection	32-bit or 64-bit Password Protection
Security	
Signature	Reprogrammable
Signature Size [bytes]	32
Signature Technology	Elliptic Curve Digital Signature Algorithm (ECDSA)
Others	
On-Chip Capacitor [pF]	23.5
Packages	Sawn Wafer with Bump

DEVELOPMENT KITSSUPPORT MATERIALS

- Demo iOS, Android and Windows Application
- Reference Antenna Design and Antenna Design Tools

SIC56NL CONCEPT

+66 2 589 8881

SIC279, SIC73WR and SIC73F1 offer a broad range of compatible industrial transponders. These low-frequency (LF) RFID transponders operate at 134.2 kHz, utilizing half-duplex (HDX) technology with 80-bit programmable code, ideal for use with existing HDX RFID infrastructure.

Our LF HDX RFID transponders are highly robust and well-suited for various industrial environments. They provide reliable identification and tracking even in harsh conditions, and are less susceptible to electromagnetic interference or noise (metals, liquids, etc.).

With extended memory, these transponders store and manage large amounts of data across multiple pages, ensuring that information remain accessible and up-to-date even in dynamic environments.

HIGHLIGHT FEATURES

- Compliant with ISO 11784/11785 HDX
- HDX Contactless Read/Write Data
 Transmission at 134.2 kHz
- Multipage Transponder (MPT)*
- Tunable Resonant Frequency**
- 80-bit Programmable ID Memory
- Best-in-Class Read and Write Sensitivity
- Robust and High-Quality Build

- Industrial Automation
- Access Control
- Asset Management
- Vehicle Identification
- Container Tracking
- Waste Bin Tag (BDE)
- Food Industry
- Cleanroom Manufacturing
- Wafer Carrier Tracking*

■ SIC279

LF HDX RFID transponder with 192-bit R/W memory

SIC73WR

LF HDX RFID transponder with 720-bit R/W memory

SIC73F1

LF HDX RFID transponder with 1,360-bit R/W memory

SPECIFICATION

SIC279

SIC73WR

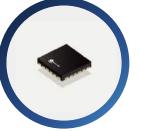
SIC73F1

Communication Protocol			
Memory Reading	ISO 11784/11785 HDX	ISO 11784/11785 HDX ISO 11784/11785 HDX	
ID Programming	SIC Proprietary	HDX De Facto Standard	HDX De Facto Standard
Read/Write Extended Memory	SIC Proprietary	SIC Proprietary	SEMI-E144-031
Memory			
Programmable ID Memory [bits]		80	
Extended User Memory Size [bits]	192	720	1360 (Multipage - MPT)
Data Retention [bits]	20	20	10
Write Cycles [times]	100k	100k	100k
Security	32-bit Password Authorization N/A		N/A
Operating Conditions			
Operating Frequency [kHz]		134.2	
Operating Temperature [°C]	−25 to 85	−40 to 85	−25 to 85
Resonant Capacitor			
Integrated Resonant Capacitor [pF]	330	380	N/A
On-Chip Tunable Resonant Capacitor	Yes	N/A	N/A
Tunable Resonant Capacitance Range [%]	±10%	N/A	N/A
Tunable Resonant Capacitance Data [steps]	128	N/A	N/A
Others			
Packages	• Wedge • Glass Tag: 23mm, 32mm	• Wedge • Glass Tag: 23mm, 32mm	Glass Tag 32 mm (Bio-Glass with Black Epoxy)

SUPPORT MATERIALS

- Silicon Craft Universal LF Reader
- PC Software for Tuning On-Chip Resonant Capacitance

+66 2 589 8881


• VDFN

HF RFID READER ICs

Silicon Craft's 13.56MHz RFID reader/writer ICs are single-chip ASICs designed. Our products adhere to major global standards, including ISO/IEC 14443A/B, ISO/IEC 15693, and JIS-X-6319-4, ensuring compatibility and reliability across diverse applications.

Harnessing the power of contactless communication through HF RFID technology, our ICs enable wireless identification regardless of external lighting conditions and without the need for line-of-sight. This allows effective detection across various mechanical constraints or vision-blocking obstacles, both indoors and outdoors. This robust technology is ideal for operation in dirty and harsh industrial settings, making it perfect for identifying and monitoring products, carriers, or machine conditions on the production line. It enhances operational efficiency, accuracy, safety, and traceability, while reducing downtime and maintenance costs.

HIGHLIGHT FEATURES

- Support Standard HF RFID Protocols
 - ISO/IEC 14443A
 - ISO/IEC 14443B
 - ISO/IEC 15693
 - JIS-X-6319-4
- SPI Interface
- Power-Down Mode Consumption:
 - 0.6 μA (RA12)
 - 1.0 µA (RA10, RE31, RE41)
- Low-Power Card Detection Mode Consumption:
 - 4.7 µA (RA12)

- Production Line Automation
- Supply Chain Management
- Asset Tracking
- Tool and Equipment Tracking
- Quality Control
- Predictive Maintenance & Monitoring

HF READER ICs FAMILY

ISO/IEC 14443A

ISO/IEC 14443A ISO/IEC 14443B ISO/IEC 15693 Card Detection

RE31

ISO/IEC 14443A ISO/IEC 14443B ISO/IEC 15693 Support 7V TVDD

ISO/IEC 14443A ISO/IEC 14443B ISO/IEC 15693 JIS-X-6319-4 Support 7V TVDD

SPECIFICATION TABLE

SPECIFICATION	RA10	RA12	RE31	RE41
Ordering Part Number	PI3AVQO7P60UT1001E1	PI6BVQL5P60UT1201T1	PI5AVQ07P20UT3101E1	PI5AVQO7P20UT3201E1
Protocol				
ISO/IEC 14443A, up to 848 kbps (NFC Type 1,2,4A Tag)	•	•	•	•
ISO/IEC 14443B, up to 848 kbps (NFC Type 4B Tag)	-	•	•	•
ISO/IEC 15693, 1 and 2 Subcarrier (NFC Type 5 Tag)	-	•	•	•
JIS-X-6319-4 (NFC Type 3 Tag)	-	Unsecured Memory Only (On-Chip HW Decoder)		
Operating Condition				
Receiver Voltage		2.7	-3.6 V	
Transmitter Voltage	2.7-7.0 V 2.7-5.5 V		2.7-7.0 V	2.7-7.0 V
Operating Temperature		-40	- 85 °C	
Maximum Driving Current	200 mA @ 5 V TVDD 300 mA @ 7 V TVDD	250 mA @ 5 V TVDD	300 mA @ 5 V TVDD 400 mA @ 7 V TVDD	300 mA @ 5 V TVDD 400 mA @ 7 V TVDD
Other Features				
Interface		SI	PI	
EEPROM	-	-	256 bytes	256 bytes
IRQ Pin	•	•	•	•
Low-Power Card Detection Mode	-	•	-	-
Low-Power Consumption on Power-Down Mode	1 μΑ	0.6 μΑ	1μΑ	1 μΑ
Packages	QFN32 (5×5)	QFN24 (4×4)	QFN32 (5×5)	QFN32 (5×5)

DEVELOPMENT KITS

- RA12 Development Kit
- RE31 Development Kit
- RE41 Development Kit

SUPPORT MATERIALS

- Firmware Source Code with Command-Line Instruction via UART
- Demo PC Software (Windows Based)
- Reference PCB Design and Schematic Diagram
- Reference Antenna and Antenna Design Tool

TRANSPONDER

SIC73F1 is a 32mm RFID glass transponder with 1,360-bit multipage read/write memory, operating at 134.2 kHz via a half-duplex protocol. The transponder is robust and well-suited for various industrial tracking applications.

HIGHLIGHT FEATURES

- Half-Duplex Contactless
 Read/Write Data Transmission
- Multipage Transponder (MPT)
- Drop-in Replacement of RFID Tag for Wafer Carrier
- Robust and High Quality Build

INTERFACE

- Compliant with ISO 11784/11785
 HDX Animal Tag ID Data
- Support to SEMI E144-0312
- Uplink Modulation: FSK (Frequency Shift Keying)

MEMORY

- 1,360 bits EEPROM
- 17 Pages Read/Write Memory
- 100,000 Erase/Write Cycles
- 10 Years Non-Volatile Data Retention

APPLICATIONS

- Wafer Carrier Tracking
- Industrial Management
- Access Control System

+66 2 589 8881

Silicon Craft presents a broad range of compatible automotive transponders with superior performance and reliability, extensively supporting a wide variety of automotive applications. Experience uninterrupted use with our transponders manufactured **AEC-Q100 certified** product line.

Fully Compatible with OEM

Superior Read Range

High-Reliability Circuit and Packaging

SIC6146-6H/BN/EN, SIC6147, SIC614A, SIC6149

		•						
SPECIFICATION	SIC6146-6H	SIC6146-BN	SIC6146-EN	SIC6147	SIC614A	SIC6149		
Compatibility	ID46	ID46+EE*1	ID46 Ext*1	ID49-1C, ID47	ID4A	ID49 ^{*1}		
Security Algorithm	48-bit / H2 32-bit Password	48-bit	48-bit / H2 96-bit / H3		128-bit / H-AES	128-bit / H-Pro		
Technology			FD	X				
Frequency			125 kl	Hz				
Downlink Protocol		ASK						
Uplink Protocol		ASK N	lanchester and Bi-Pha	ase with RF/32 Data	Rate			
EEPROM Memory Size	256-bit		4,096-	-bit				
Unique ID			32-bi	t				
User Memory	128-bit	128-bit / 128-bit / 96-bit / 64-bit / Ext. 3,584-bit Ext. 3,584-bit						
Form Factor			Wed	ge				
Car Brand *2	Honda, BMW, Nissan, Hyundai , Chevrolet, Kia, Citroen, Peugeot	Honda, BMW, Nissan, Hyundai , Chevrolet, Citroen, Kia, Peugeot	Chevrolet, Opel, GMC	Honda, Hyundai,Fiat, Mitsubishi, Suzuki, Acura, Jeep,Renault	Nissan, Honda, Infiniti, Jeep, Kia, Hyundai	BMW, Chevrolet, Mini Cooper, Ford, Toyota		

SIC614C/D/E, SIC618A, SIC61T5, SIC6148, SIC6188, SIC618C

SPECIFICATION		·	•					
	SIC614C	SIC614D	SIC614E	SIC618A	SIC61T5	SIC6148	SIC6188	SIC618C
Compatibility	ID4C*1	ID4D	ID4E, ID64	ID7A, ID8A	Т5	ID48	ID88, MQB48 ^{*1}	ID8C,TEMIC
Security Algorithm	Fixed Code	40-bit / D40 80-bit / D80	40-bit / D40	128-bit / D-AES	Fixed Code	96-bit / M2	128-bit / M-AES 96-bit / M2	128-bit / AUT64
Technology		HD>	<			FD>	(
Frequency		134.2	kHz			125 k	Hz	
Downlink Protocol				AS	SK			
Uplink Protocol	FSK Upli	nk at 134 kHz / 123 kl	Hz with RF/16 Data Ra	ate	ASK Manchester and Bi-Phase with RF/32, RF/40, RF/64 Data Rate	ASK Mancheste Bi-Phase with F	er and RF/32 Data Rate	ASK Manchester and Bi-Phase with RF/32, RF/64 Data Rate
EEPROM Memory Size	80-bit	552-bit	88-bit	3,072-bit	160-bit	256-bit	2,048-bit	320-bit
Unique ID	80-bit Programmable ID	24-bit Serial N	umber 8-bit Manufac	turer Code	64-bit/128-bit Programmable ID	32-bit	32-bit Unique ID 1 32-bit Unique ID 2	64-bit/128-bit Programmable ID
User Memory	80-bit	336-bit	8-bit	112-bit / Ext. 1,024-bit	128-bit	94-bit	94-bit / Ext. 1,024-bit	128-bit
Form Factor	Wedge					Glass Tag	Wee	dge
Car Brand*2	Ford, Lexus,Mitsubishi, Toyota, Hyundai	Ford, Toyota, Kia Hyundai	Chrysler	Toyota, Subaru, Scion Citroen, Peugeot	Fiat, Audi, Honda	Volkswagen, Audi	Audi, Seat, Skoda, Volkswagen	Mazda, Proton

INFORMATION

- *1 Please contact our support team for further product information.
- *2 Silicon Craft Technology PLC does not hold intellectual property rights or licenses for the vehicle brands, transponders, or commercial names mentioned in this document. These brands and names are used solely for product communication purposes.

SIC61AU

UNIVERSAL IMMOBILIZER KEY

SIC61AU is a universal immobilizer transponder for automotive keys, operating within the low-frequency (LF) range.

It supports four families of LF communication protocols:

A, N, S, and T, with 14 classical transponder types supported.

HIGHLIGHT FEATURES

- Universally support transponders in the market both HDX and FDX
- Best-in-class reading performance
- Compatible with 4 families and 14 types of conventional immobilizer transponder
- Simple step to transform transponder to each type
- High-Quality and robust transponder package
- Simplify transponders inventory management to handle fluctuating demand in car service center or locksmiths shop

ORDERING INFORMATION

Part No: PAUDW503EP0SUAU30C3

Description: SIC61AU-30 Universal immobilizer LF FDX & HDX with multiple encryption wedge 134.2/125kHz, Canister, RFID Tag

Package: Wedge (6.0 mm H x 3.0 mm W x 12.0 mm L, Standard size with OEM)

+66 2 589 8881

LF TRANSPONDER ICS FOR ANIMAL IDENTIFICATION

SIC7150, SIC278, and SIC279 are low-frequency (LF) RFID transponder ICs are designed for a broad range of applications in animal identification. They operate at 134.2 kHz RFID, fully compliant with ISO 11784 and ISO 11785.

Low-frequency (LF) transponder ICs streamline animal handling, elevating the standard of livestock management while mitigating the risk of disease transmission. These transponder ICs also play a crucial role in the identification of pets and laboratory animals.

Silicon Craft's specialized chip design, integrated with proprietary intellectual properties (IPs), provides best-in-class read range performance. It also includes on-chip resonant capacitance tuning, which optimizes transponder communication capabilities and greatly enhances operational efficiency.

HIGHLIGHT FEATURES

- Meets ISO 11784/11785 and ICAR Standard for Animal Identification
- Support LF Transponders Used in Industrial Applications
- On-Chip Tunable Resonant Capacitor
- Best-in-Class Communication Distance

- Livestock Identification
- Pet Identification
- Fish Identification
- Pigeon Identification
- Laboratory Animal Identification

TRANSPONDER ICS FOR ANIMAL IDENTIFICATION APPLICATION

SIC7150

Transponder IC with Full-Duplex (FDX-B)

SIC278

SPECIFICATION

Transponder IC with Full-Duplex (FDX-A/FDX-B)

SIC279

Transponder IC with Half-Duplex (HDX R/O)

SIC7150

SIC278

SIC279

Communication			
Protocol	ISO 11784/11785 (FDX-B)	ISO 11784/11785 (FDX-B), FSK FECAVA (FDX-A)	ISO 11784/11785 (HDX R/O)
Reader Talk First	Yes		N/A
Memory			
User Memory Size [bits]	320	1,184	192
Data Retention [years]	10		20
Write Cycles [times]	100,000		
Security	Read and Write 32-bit Password Authorization		
Resonant Capacitor			
Integrated Resonant Capacitor [pF]	210, 250, 330	230	330
On-Chip Tunable Resonant Capacitor	Yes*		
Tunable Resonant Capacitance Range	±5%	±5%	±10%
Tunable Resonant Capacitance Data [steps]	32		128
Others			
Packages	Sawn Wafer, UDFN	Sawn Wafer, WDFN	VDFN, Glass Tag
Megapad for Direct Connection of Coil on Die	Yes		No

Remark [*]: Only Available for 330 pF

SUPPORT MATERIALS

- Silicon Craft Universal LF Reader
- PC Software for Tuning On-Chip Resonant Capacitance

